e TRIR——

AD-A278 627 '
NPS.AS5.93.025 UL ' @

NAVAL POSTGRADUATE SCHOOL

Monterey, California

APR 2 6 1934

"D

.».,A.-*,,%J

ERROR PATTERNS FROM ALTERNATIVE COST
PROGRESS MODELS

000

0. Douglas Moses

=0 November 1993
=.p
= |
=
=N
=0 Approved for public release; distribution is unlimited
=00
Lo [ DEIC SUaldiT TITTTTD 8

Prepared for:  Naval Ceater for Cost Analysis
Washington, D. C. 20350-1100

94 4 23 101
“———J




NAVAL POSTGRADUATE SCHOOL
Monterey, California

RADM T. A. Mercer Harrison Shull
Superintendent Provost

This report was prepared in conjunction with research
conducted for the Naval Center for Cost Analysis and funded by the
Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

o. uglas Moses
Associate Professor
Department of Systems Management

Reviewed by:

A

David R. Whipple, airman
Deparment of Systefis Management

Released by:




REPORT DCCUMENTATION PAGE Biylasaispnl

s estimatnd 10 average 1 hour per sespores, incuding the &me lor eviswing Insfucions, m.&uﬁmm

information, including suggestions for reducing this burden, 10 Washington Headquarers Servioss, Direciorate for inlnformation Operations and Reports, 1215 Jeflerson Devis Highwey,
Subs 1204, Aviingion, VA 222024302, and 10 the Ofice of Managsment Budget, Paper Reduction Project (0704-0188), Weshingion, DC 20503,

1. AGENCY USE ONLY Zanwliant) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
November 1983 Tachnical Report, November 1993
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

ERROR PATTERNS FROM ALTERNATIVE COST PROGRESS MODELS
6. AUTHOR(S) O&MN, Direct Funding

O. Douglas Moses

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
Systems Management Department

Naval Postgraduate School

NPS-AS-93-025
Monterey, CA 93943

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Naval Postgraduate Schoo!
Monterey, CA 93943

11. SUPPLEMENTARY NOTES

{ 12s. DISTRIBUTION / AVAILABILITY STATEMENT ) 12b. DISTRIBUTION CODE

Approved for public release, distribution unlimited

13. ABSTRACT b 200 words)

Numerous cost progress models have been offered in the literature and used in practice. This paper
selects five cost progress modeis which predict future cost using various combinations of three factors
(past cost, cumulative quantity, and production rate), and investigates the forecast accuracy of the
modeis under varying circumstances. The broad objectives are to (1) identify conditions which may
affect model accuracy, documenting the manner in which forecast errors for each model depend on
those conditions, and (2) suggest which of the five models may be more or less accurate under a given
set of conditions. Particular attention is paid to how model accuracy is affected by one specific condition
. - changes in production rate.

W s e

14. SUBJECT TERMS 5. NUMBER OF PAGES
Leamning curve, Cost progress model, Cost estimation, Production rate, 55
Forecasting accuracy 16. PRICE CODE
PONZ
17. SECURITY CLASSIFICATION}18. SECURITY CLASSIFICATION]19. SECURITY CLASSIFICATION|20. LIMITATION OF ABSTRACY
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified Unlimited
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prescribad by ANSI Sk 20908
28102

———




ERROR PATTERNS FROM ALTERNATIVE

COST PROGRESS MODELS

0. Douglas Moses
Associate Professor
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93943
408-656-3218

Accesion For
NTIS CRA&! 0
October 1993 DTIC TAB

Urannounced
Justification

By
Distribution}

Availability Codes

. Avail and/or
Dist Special

g |




ERROR PATTERNS FROM ALTERNATIVE
COST PROGRESS MODELS

ABSTRACT

Numerous cost progress models have been offered in the
literature and used in practice. This paper selects five cost
progress models which predict future cost wusing various
combinations of three factors (past cost, cumulative quantity, and
production rate), and investigates the forecast accuracy of the
models under varying circumstances. The broad objectives are to
(1) identify conditions which may affect model accuracy,
documenting the manner in which forecast errors for each model
depend on those conditions, and (2) suggest which of the five
models may be more or less accurate under a given set of
conditions. Particular attention is paid to how model accuracy is

affected by one specific condition -~ changes in production rate.




ERROR PATTERNS FROM ALTERNATIVE
COST PROGRESS MODELS

INTRODUCTION

Cost progress models have proven their value in estimating
tasks encountered in production, purchasing and the management of
other organizational operations. Going by various names (e.g.
"experience curves", "learning curves", "cost improvement curves"),
cost progress models have long been accepted as a useful tool for
planning, estimating, and predicting the pattern of costs expected
from a repetitive production or acquisition process. Various cost
progress models exist but most such models are versions of the
standard learning curve, perhaps with additional variables added to
improve explanatory power and forecast accuracy.

How accurate are various cost progress models? Does their
accuracy depend on the conditidns surrounding their use? Are
particular cost progress models more accurate in some circumstances
and other models more accurate in other circumstances? The purpose
of this paper is to document the accuracy of a set of common cost
progress models under various circumstances, indicating variables
that may impact model accuracy, and highlighting situations when

model accuracy may be expected to improve or deteriorate.

RELATED RESEARCH

The literature on cost progress models/learning curves is
substantial.? Three branches of research are relevant to the
current study. The first branch has to do with alternative forms

of cost progress models and alternative variables suggested for
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inclusion. Most cost progress models start (some end) with some
version of the familiar 1learning curve. The premise of the
learning curve is that cumulative quantity is the primary cause of
changes in unit cost during a production or acquisition program.
There is general acknowledgement that cumulative quantity is only
a partial explanation and hence much prior research has attempted
to augment learning models with other variables. Some attention
has been paid to variables reflecting changes in fixed costs
associated with capacity (e.g., Balut, 1981; Balut, et.al., 1989;
Moses, 1990), but the greatest amount of attention has been paid to
changes in production rate.?

Conceptually production rate is argued to affect unit cost due
to economies (or diseconomies) of scale (e.g., Bemis, 1981; Boger
and Liao, 1990; Large, et. al., 1974; Linder and Willbourn, 1973).
Empirically, evidence on the benefit of including production rate
variables in cost progress models is mixed. Various studies (e.g.,
Alchian, 1963; Cochran, 1960; Hirsh, 1952; Large, Campbell and
Cates, 1976) found little or no significance for rate variables.
Other studies did document significant rate/cost relationships
(e.g., Bemis, 1981; Cox and Gansler, 1990). In reviewing the
existing research on production rate, Smith (1980) concluded that
a rate/cost relationship may exist but that the existence, strength
and nature of the relationship varies with the item produced and
the cost element examined.? Collectively, this branch of
literature suggests that inclusion of variables, such as production

rate, in cost progress models sometimes has improved cost




explanation -- but not always. It is relevant here because the
present research selects a representative number of cost progress
models from the existing literature and investigates their accuracy
under various conditions.

The se:cond branch of 1literature has been concerned with
identifying factors that cause or influence the nature of the
learning or cost improvement phenomenon, with attention paid to a
wide variety of behavioral, crganizational and process variables.
Conway and Schultz’s (1959) classic paper is an early example.
Dutton and Thomas (1984) provide a typology of factors causing
learning, dividing these factors into categories based on origin
and type. Adler and Clark (1991) provide a step toward modeling
the links between selected causal factors and resultant learning.
This branch of literature is relevant to the current paper because
it documents how cost imprerment patterns are inevitably
influenced by a host of variables. It implicitly acknowledges
that the ability of cost progress models to adequately describe
cost/output relationships will depend on these factors. 1In short,
this literature implies that model forecast accuracy (irrespective
of the form of model selected) will be conditional on
circumstances.

The third branch of literature is concerned with explicitly
examining cost progress model accuracy under various conditions.
Smunt (1986) compared learning curve models to naive and moving
average models, finding that relative accuracy depended on such

factors as learning rate and forecast horizon. Moses (1991, 1992)




examined learning curve and rate adjustment models, concluding that
relative forecast accuracy and bias were dependent on a collection
of variables, including variations in production rate, in factory
burden, in data availability, as well as other factors. These
studies are relevant here because they explicitly identify
situations where cost progress models can be expected to be
comparatively more or less accurate, one question of interest in
the present study. Some of the conditions examined in these
studies, conditions expected to influence cost progress model
accuracy, are re-examined here. However, each of these prior
studies observed accuracy using simulated data under well-
controlled experimental conditions. Their results should perhaps
be seen as hypotheses about how model accuracy may behave in
practice with actual data. Observing the accuracy of various cost
progress models, under various éonditions, when applied to data

from actual programs is the objective of this study.

ALTERNATIVE COST PROGRESS MODELS

Cconsider the central purpose of a cost progress model. It is
not really a model that explains cost per se. (It says nothing
about the absolute amount of cost.) Rather its purpose is to
explain the relationship between costs at different points during
a repetitive production/acquisition process. Every cost progress
model rests on two assumptions: (1) that future cost depends on
past cost, and (2) that future cost differs systematically from
past cost as a function of changing conditions during the
repetitive process. Alternative models differ primarily in which

4




"changing conditions" the modeler sees as sufficiently important to
be included in the model. The most common cost progress model is
the learning curve, which assumes that future cost systematically
differs from past cost as a function of "experience", measured by
cumulative output. The most common modification of the learning
curve is, as mentioned previously, the incorporation of a term to
reflect production rate, which assumes additionally that future
cost systematically differs from past cost as a function of output
per period.

This study investigates the accuracy of cost progress models
that include the three variables just mentioned: (1) past cost, (2)
cumulative quantity, and (3) production rate. Selectively
combining these variables, four possibilities exist:

a) Future cost= f (past cost)

b) Future cost= f (past cost, cumulative quantity)

c) Future cost= f (past cost, production rate)

d) Future cost= f (past cost, cumulative quantity, production
rate)

One model each from groups a, b, and c, and two models from group
d, are investigated.

1l. Random Walk (RW) Model: The simplest of all, the random
walk model assumes that future cost is equal to the most recent
past cost:

C. = Cey (1)
where

unit cost
sequencing subscript

Tt O
i




This naive model serves as a benchmark for assessing the accuracy

gained by including additional variables.

2. Leacning Curve (LC) Model: The familiar learning curve*

is the model used for incorporating "experience" into the

prediction.
b
C.=6C Q (2)
where
c, = theoretical first unit cost
Q = cumulative quantity produced
b = a parameter, the learning curve exponent or slope
C, t = as before

3, Rate Adjustment (RA) Model: The assumption of the rate

adjustment model is that future cost is equal to past cost,
adjusted for any change in production rate (production volume per
period).

Ce = Cey A, (3)
A, is an adjustment factor capturing the impact of production rate

on the spreading of fixed costs.

A= Ber g (1 - F) (3a)
Rt
where
A= adjustment factor
R = production rate per period
F = proportion of cost represented by fixed overhead®

C, t = as before
Unit cost is assumed to vary inversely with production rate due to
the spreading of fixed overhead cost over differing volume. Thus

unit cost will change as production rate (R) changes -~ and the




degree of change will depend on the proportion of fixed overhead
cost in total cost (F). The adjustment factor is a version of an
"overhead redistribution" model developed by Balut (1981).¢

4. Bemis (BE) Learning/Rate Model: This is the first model
presented here which considers (1) past cost, (2) cumulative
quantity and (3) production rate. It is the most widely usedq
model incorporating these three variables and was developed by
augmenting the traditional learning curve with an analogous

production rate term.

a

C. = C, Q'R (4)
where

d = a parameter, the production rate exponent or slope

C, C, Q, R, b, t = as before
Work on production rate dates at least to the 1950s (e.g., Hirsh,
1952) and empirical work on this learning/rate model was first
conducted by RAND (e.g., Large, et. al., 1974), but Bemis (1981)
has been credited with popularizing the model (the reason the Bemis
label is used here).

5., Balut (BA) Learning/Rate Model: This is a second model
which considers past cost, cumulative quantity and production rate.
It is a version of the original Balut (1981) model and combines the
traditional learning curve (Model 2) and the rate adjustment model
(Model 3) previously discussed. The basic premise is that, in the
absence of production rate changes, cost would follow a traditional
learning curve. The impact of production rate change is

incorporated by adjusting the cost forecasts from the learning
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curve model by an overhead redistribution adjustment factor.

b
cC. = ¢ Q A, (5)
where
RR
A,,= =2 F + (1-F) (5a)
Rt
and
R, = reference production rate, average production rate for
past lots.
¢, C, Q, b, t, R, F = as before
ASSESSING ACCURACY

The objective of the study is to investigate model accuracy
under various conditions. The data for the study involved costs
and quantities for successive production lots. Accuracy here is
defined in terms of the ability of a model to correctly forecast
the "next lot average unit cost." Accuracy in such near term cost
forecasting is seen as being a relatively minimal requirement
expected of a cost progress model. The basic process is duite
simple:

(a) Models were fit to a series of cost points to estimate
(when necessary) model parameters.’

(b) Estimated models were used to forecast future (next
period) average unit cost.

(c) Realized actual unit costs were compared to forecasted
costs to assess accuracy.

It should be noted here that model accuracy centrally involves the
ability to correctly forecast in advance, not the ability to

explain a cost series ex post.®* Two notions of accuracy apply.




One is the absolute magnitude of forecast error, regardless of
whether the forecast is too high or too low. The second is the
direction of the error, whether the model under or over-estimates

future cost. Given two concepts, two measures were used:

ERROR = |PUC - AUC| <+ AUC (6)

BIAS = (PUC - AUC) =+ AUC (7)
where

PUC = predicted unit cost

AUC = actual unit cost
ERROR is a commonly used accuracy measure, the absolute percentage
error. ERROR can take on only positive values and higher values,
of course, signal poorer forecasts. BIAS takes on both positive
and negative values. Positive (negative) values signal over

(under) prediction of cost.

CONDITIONS AFFECTING MODEL ACCURACY

The general research hypothesis is that the accuracy of models
will depend on the circumstances in which they are used. What
circumstances might impact accuracy? Research cited above (Smunt,
1986; Moses, 1991, 1992) suggested and discussed variables that
might have an effect. Below such variables are listed, with a
brief description and comment on how they were operationalized
(measured) empirically. Collectively these variables will be
referred to as the "condition" variables because they attempt to
represent exogenous conditions which may affect model accuracy.

1. Fixed Cost Burden: Total unit cost must consist of both

variable costs and a share of the total fixed cost burden
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associated with capacity. A major role of production rate is
determining the volume of output over which fixed capacity costs
will be spread. Hence, the importance of including a production
rate variable in a cost model, and thus model accuracy, may depend
on the degree to which total unit cost is made up of fixed costs.
The following regression equation was fit to cost series data and
the coefficient f used as a measure of fi.ed cost burden.

c.=v+£f ]

R,

This equation is consistent with seeing total unit cost per period
(c.) as the sum of variable cost per unit (v) plus a standard fixed
cost per unit (f) adjusted for relative production rate per period
(R.). Higher values of f would be consistent with greater fixed
cost burden, i.e., a greater proportion of fixed cost in total
cost.

2. Learning Slope: Past simulation research (Smunt, 1986)
shows that the importance of including a learning parameter in a
cost model depends, not surprisingly, on the degree of learning
that exists in the data. Hence, accuracy across the five models
examined may depend on learning rate. Learning slopes were
measured by using the b parameter estimated from model 2,
transformed to learning rates (e.g., 90%, 80%, etc.). Higher
values indicate less learning.

3. Cost Variability: Costs may vary from period to period
due to unsystematic random factors. Such random factors
influencing cost can be expected to obscure systematic
relationships between cost and quantity or rate variables, reducing

10




the chance that a cost model will be estimated correctly and
forecast accurately (Smunt, 1986; Moses, 1991). Empirically, Cost
Variability was measured by the average period-to-period (lot-to-
lot) percentage change in average unit cost. Higher values
indicate greater period-to-period variability in unit cost.

4. Quantity Variability: If production rate was highly
stable across periods, there would be little need for a rate
variable in a cost model (and little ability to correctly estimate
a rate parameter by fitting a model to past data). Hence, the
importance of incorporating a rate variable into a cost model, and
model accuracy, may depend on the degree to which production
rate/quantity varies. Empirically, Quantity Variability was
measured by the average period-to-period (lot-to-lot) percentage
change in production quantity. Higher values indicate greater
quantity variability.

5. Quantity Trend: When initiating a production/acquisition
program for a new item, does production rate (lot quantity) start
at a low level and build up slowly to full capacity? Or is full
capacity production achieved rapidly? Simulation results (Moses,
1991) have shown that the rate at which lot quantities grow when
initiating a program affects cost model accuracy. Does a similar
relationship exist when using real data? Empirically, the growth
trend in lot quantity was operationalized by dividing first lot
quantity by the average lot quantity over the (to date) life of a
program. Hence, it is a measure of first lot size as a proportion

of average lot size and a crude indicator of the trend in quantity.
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Lower values indicate greater growth in quantity relative to
initial quantity.
6. Plot Points: The number of data points available to

estimate the parameters of a model may affect model accuracy. Not

surprisingly, simulation results (Moses, 1991) show that when
comparing the relative accuracy of models, models with f- (more)
parameters tend to be relatively more accurate when the .aber of
observations is smaller (greater). One question is whether similar
findings will come from real data.

7. Future Production Rate: Once a model is estimated ' ~ing
past data, it is used to forecast future cost. Changes in
production rate between the model estimation period and the future
should alter future unit cost and hence a model’s ability to
forecast that future cost accurately. Cost models incorporating
production rate variables would b;a expected to have some advantage
in such situations, and the degree of advantage would be expected
to depend on how much future production rate differs from the past.
Empirically, a variable measuring the change in production rate was
constructed by dividing next (future) period’s rate by last (most
recent) period’s rate. (This ratio was then logged to make the
distribution symmetrical.) Positive (negative) values indicate

increases (decreases) in production quantities.

SAMPLE AND DATA

The accuracy of the cost progress models was investigated
using data for a sample of military aircraft and missile systems

programs taken from the U, S, Military aAircraft Cost
12




(DePuy, et. al., 1983) and the U, S. Missile Cost Handbook
(Crawford, et. al., 1984). These handbooks contain data for
virtually all military aircraft and missile programs from the early
1960s through the early 1980s. Two basic data items were collected
from the handbooks for each program: annual lot quantities and
average airframe unit costs per lot (in 1981 constant dollars).
Programs were deleted from consideration if there were incomplete
data or if the programs ran less than five years (a minimum number
of data points was needed to fit the cost progress models). Based
on these criteria, 46 programs (32 aircraft, 14 missile) were
included in the final sample. These programs ranged in length from
five years to thirteen years.

The original sample of 46 programs was "expanded" into 121
separate cost series. This was accomplished by dividing each
program cost series into separate individual year-to-date cost
series. For example, if a particular program had cost data
available for six years, say 1970-1975, this single program cost
series would be expanded into three separate series as follows:

Cost series #1: 1970-1973 data (used to forecast 1974 cost)

Cost series #2: 1970-1974 data (used to forecast 1975 cost)

Cost series #3: 1970-1975 data (used to forecast 1976 cost)
Thus the initial cost series for each program includes the first
four years of data, while subsequent cost series were created by
additionally including data from the next year in the cost series.
This approach makes maximum use of data and approximates the actual

process of a cost estimator who would update a forecast model each
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period to incorporate the most recent data.

ANALYSIS AND FINDINGS

The basic methodology used to assess cost model accuracy was
as follows: Each of the five alternative models was estimated
(when necessary) on each of the 121 cost series. Next-period data
( e.g. cumulativ=a quantity and/or production rate) was input to
each model to forecast next-period cost. Then next-period
forecasted cost and next-period actual cost were compared. Thus
the process produced 121 measures of error for each of the five
models. The analysis primarily involves describing and explaining
(when possible) the pattern of errors observed across the different
models and across the different circumstances (i.e., across

different values of the seven condition variables).

- ics:

Table 1 provides selected descriptive statistics for both
ERROR and BIAS for the five models. A general pattern is evident:
Moving from the left to the right in the table, both magnitude of
ERROR (mean and median) and the dispersion in ERROR (standard
deviation and SIQR) tend to increase. Average magnitude of error
ranges from about 13% to 25%. Note that this movement from left to
right in the table coincides with increased complexity of the
models: The random walk (RW) model considers only past cost in the
forecast; the learning curve (LC) and rate adjustment (RA) models
additionally consider either learning or production rate, but not

both; while the Bemis (BE) and Balut (BA) models consider both

14




Table 1

Error Statistics for Alternative Cost Progress Models

MODELS

Median-
absolute
error

Stnd. Dev.- 0129 0153 .173
absolute
arror

s1QRr! - .126 .169 .146
absolute
error

Mean-bias

1. SIQR= Semi-interquartile range: (75th quantile - 25th quantile)




learning and production rate. One might have hypothesized in
advance that accuracy would improve, not deteriorate, with the
incorporation of additional variables; that of course is the point
of using more complex models for forecasting.

At least three possibilities perhaps explain the contrary
finding. First, the more complex models could simply be mis-
specified in that the relations implied between cost, gquantity and
rate do not adequately describe reality. Forecasts from
theoretically incorrect models would be expected to perform poorly.
Second, the models could be correctly specified, but the amount of
"noise" in the cost data relative to the proportion of variance in
cost explainable by the learning or rate variables may be too high.
Hence, parameter estimates are unreliable and forecasts poor.
Third, the more complex models could be correctly specified but,
because they incorporate more vafiables, the data in general are
too lean (too few observations in the cost series) to estimate the
model parameters. This is a problem of degrees of freedom. If
this is the case, then the more complex models should perform
better as the data become richer. This particular possibility will
be addressed later.

It should also be noted that more complex models incorporating
more variables typically have greater ability to explain, ex post,
a cost series (i.e., r* goes up as the number of explanatory
variables does). Thus, the results here suggest that ex post
explanation and ex ante forecasting need not be strongly related.

This is consistent with previous findings for cost models from

17




simulation studies (Moses, 1993).

Another general result from table 1 concerns bias. Values for
BIAS tend to be positive, except for the LC model. Thus, the
models tend to over-estimate future cost, providing forecasts that
on average are too high. This tendency is strongest for the RA and
BA models. In contrast, the traditional learning curve (LC) tends
to under-estimate future cost. This finding for the learning curve
is also consistent with previous conclusions from simulation

studies (Moses, 1992).

ac cas .

Is the accuracy of the models dependent on the circumstances
in which they are used? Do models perform well in some
circumstances, less well in others? To get a first-cut answer to
these questions, three tests of the relationship between ERROR
(from each of the five models separately) and the condition
variables were conducted:

1. Pairwise Correlations: This is a univariate test of
association, where measurement errors in other variables do not
intrude.

2. Multiple Regression of ERROR on the Condition Variables
together: This is a test of association for each variable while
controlling for the others.

3. Stepwise Regression of ERROR on the Condition Vvariables:
This permits variables that maximally explain ERROR to be
identified. (The stepwise procedure was stopped when no additional

variable would significantly (alpha < .05) enter the regression

18




Table 2

Test of Relationship Between Cost Progress
Model Brrors and Explanatory Conditions




Table 2 Continued

Quantity Trend | Corr. -.05 .09 -.09 .08 -.04 ]
Reg. Coef. .04 .08 .01 -.01 .09

.31 -18 1.50
-.08 -15 -.05

-.01 -.02 -.01

.89 -1.80 77
-30" -25%* S27%*
-.07 -07 AL
3.66*** | 3,02** 3.33**
-07 -.08 -12
393" 3.38** 3,89+

* Significant at .05
** Significant at .01
*** Significant at .001




model.)

Correlations, regression coefficients and t values from these
three approaches are provided in Table 2. Several observations
concerning Table 2 follow.

First, where results are strong (significant at a higher level
of probability) in one of the three tests, they tend to be
corroborated in the other two tests. So there is at least some
convergence across the tests.

Second, for three of the seven conditions (Quantity
Variability, Quantity Trend and Plot Points) there are no
significant results and thus no indication that model accuracy
depends on these factors. This is of interest simply because all
of the factors in this study have been shown to impact accuracy in
at least one of the simulation studies cited previously. of
particular interest is the non-result for Plot Points. For none of
the five models does the magnitude of forecast error depend on the
number of observations in the cost series used to estimate the
model. This suggests that the degrees of freedom problem in model
estimation mentioned earlier is not the likely explanation for some
models performing ketter or worse than others.

Third, significant results are found for the other four
condition variables, and these results are not limited to single
models. Rather, the accuracy of several of the models (at least
three of the five) are related to these conditions.

How these conditions affect the accuracy of individual models

differs from model to model, however. What follows is a model-by-
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model look at the impact of the conditions. The approach used was
to partition the sample into three subsamples depending on whether
the values for a condition variable were low (bottom quartile),
medium (middle 50%), or high (top quartile) and then, for each
model, observe and plot average values for ERROR for these three
subsamples. This approach is followed below for variables found

significant in the Table 2 tests.

Exror Analysis for Each Model

1. Random Walk Model: The Table 2 tests showed that RW model
accuracy depended on two conditions ~- Learning Curve Slope and
Future Production Rate -~ so the sample was partitioned
(separately) on each of these two variables and average ERROR from
the RW model determined for each of the three subsamples. Plots
showing RW ERROR as a function of these two condition variables are
in Figure 1. A horizontal line in the plot marks the overall
average RW ERROR, so movement above and below this line indicates
the impact of differing conditions.

First, RW ERROR depends somewhat on the Learning Curve Slope
exhibited in the cost data, with greater ERROR experienced when
learning slopes are high -- i.e., when little learning apparently
has occurred. The fact that RW ERROR depends on the degree of
learning is not surprising; the RW model ignores learning and hence
the degree to which it mis-forecasts cost ought to depend on the
degree of learning occurring in the cost series. But the observed
pattern is the opposite of the expected one. One would expect the

RW ERROR to be greater when more learning was taking place, not
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less. The degree to which ERROR depends on learning slope is
admittedly small, but the reason for the particular pattern is not
obvious.

Second, RW ERROR depends on the Future Production Rate. Note
the pattern is not monotonic; ERROR is higher than average for low
values of future production, dips below average for mid-range
values, and increases substantially for high values. This pattern
is quite interesting but, as will be seen, it is repeated for all
of the models and will be discussed later.

2. Learning Curve Model: Figure 2 shows how the accuracy of
the traditional learning curve depends on Burden, Learning Curve
Slope and Cost Variability. The role of Burden seem straight-
forward: The LC model does not include a production rate variable,
and one of the roles of a rate variable is to deal with the effect
of spreading fixed overhead burdén over varying levels of output.
The LC model should be expected to perform more poorly when the
level of burden is high.

That the accuracy of the LC model should also depend on the
degree of learning estimated by the model is somewhat interesting.
The effect shown in Figure 2 is mild but shows that LC ERROR is
slightly higher when estimated learning rates are in either the
bottom or top quartiles. A fuller story comes from observing BIAS
rather than ERROR. When much learning appears to be occurring, the
LC model under-estimates future cost (average BIAS of -15%). When
little 1learning appears to be occurring, the LC model over-

estimates future cost (average BIAS of +12%). What seems to be
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happening is a "regression to the mean" effect. A high (low) rate
of past cost reduction causes the model to forecast a high (low)
rate of future cost reduction and, in each case, the high (low)
rate regresses to a more average rate, causing consistent over-or
under-estimation of future cost.

A more pronounced effect occurs for Cost Variability, with a
sharp increase in LC ERROR when past costs hav: varied greatly from
period to period. This finding is consistent with past simulation
results suggesting that LC models try to explain all variability in
cost through the estimation of the single learning parameter and,
when there is considerable period to period "noise™ in the cost
series, end up erroneously "interpreting" that noise in the
estimated learning rate.

3. Rate Adjustment Model: Figure 3 shows how the accuracy of
the rate adjustment model dependé on Burden, Learning Curve Slope
and Future Production Rate. The figure shows that RA model ERROR
increases as the fixed overhead burden increases. Although
statistically significant, the effect is mild. It is also not
obvious why this should occur. The approach of the RA model is to
adjust unit cost for the effect of spreading fixed cost burden over
varying output volume. The evidence here indicates that the
ability of this model to properly adjust depends on how much fixed
overhead there is.

The finding that RA ERROR (mildly) depends on Learning Curve
Slope, or at least the direction of the finding, is unexpected.

Since the RA model ignores learning, one would expect ERROR to be
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greatest when learning was greatest (lowest slope values). The
opposite effect is exhibited.

The biggest impact on RA ERROR is due to differences in Future
Production Rate. As noted when discussing the RW model, a "V"
shaped pattern occurs, with ERROR growing as Future Production Rate
diverges from the middle range. Again, this will be discussed
later.

4. Bemis Model: Figure 4 shows how the accuracy of the Benmis
model depends on Burden, Cost Variability and Future Production
Rate. BE model ERROR increases with increases in Burden. This
positive relationship is the same as just noted for the RA model,
as is the interpretation. In both cases, the model includes a rate
term which is designed in part to capture the effect of spreading
fixed cost burden over differing output volume. In both cases, the
model’s accuracy declines as thevamount of Burden increases.

As Figure 4 shows, BE ERROR also is larger when there is
relatively greater period-to-period variation in cost. The BE
model is the same as the LC model, with a rate term tacked on, and
this finding is shared with the LC model (and a similar explanation
may apply).

Lastly, BE ERROR also depends on Future Production Rate, with
the same "V" shaped pattern to be discussed later.

5. Balut Model: Figure 5 shows that the accuracy of the
Balut model depends on Learning Curve Slope, Cost Variability and
Future Production Rate. BE ERROR tends to be considerably smaller

when learning is great (lower Learning Curve Slope values). Two
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offsetting effects may explain this. First, models with learning
variables tend to be biased toward under-forecasting of future cost
when the apparent learning is great (because of the regression-to-
the-mean effect, previously discussed). Second, overall, the BA
model tends to be biased toward over-forecasting of future cost (as
seen in Table 1). These two effects offset, resulting in more
accurat. forecasts for the subsample where learning is great.
(BIAS turned out to be essentially zero for this subsample and
about +5-8% for the other two).

BA accuracy is also dependent on Cost Variability, although
the finding is only mildly significant. Figure 5 shows greater
ERROR when Cost Variability is in the middle range; there is no
obvious explanation for this non-monotonic inverted "V" pattern.

Lastly, BA ERROR is also dependent on the Future Production
Rate, with the now familiar "v* éattern. This general result will

be discussed next.

The Impact of Future Production Rate

Of the seven condition variables, Future Production Rate is
special for four reasons. First, conceptually it is distinct. The
other six variables describe conditions existing during the periods
over which the models are estimated -- i.e., the past. In
contrast, Future Production Rate describes a condition (the level
of production) expected to exist during the period for which cost
is being forecast. Second, how models perform in situations where
production rates are changing is of particular importance for
today’s cost analyst, facing cost forecasting problems in an
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environment of rapid industrial change, such as production rate
cutbacks in the defense industry. Third, the previous results have
shown that in general the largest swings in average ERROR occur
when moving across the subsamples partitioned on Future Production
Rate. Last, the pattern of errors is consistent and non-monotonic,
a V-shaped pattern with top and bottom quartile values for Future
Production Rate associated with larger ERROR. Figure 6 summarizes
this finding for all five models.

What does the V-shaped pattern mean. Simply put, if
production rate in the period for which cost is being forecast
diverges much from the recent past, either up or down, the accuracy
of all five of the models deteriorates. This is not a surprising
finding for models 1 and 2, the random walk (RW) and traditional
learning curve (LC), because neither model incorporates production
rate as a variable. But the faét that the RA, BE and BA models
exhibit the same pattern indicates that the attempts of these
models to explicitly capture production rate effects have not been
fully successful.

Given that all the models mis~forecast cost when future
production rate changes, a related question is: 1In what direction?
This can be answered by observing values for BIAS, which are
plotted in Figure 7. Some patterns from Figure 7 are of interest:
First, the RW and LC models both under-estimate cost (negative
BIAS) when future production rate falls and over-estimate cost when
future production rate rises. This is not surprising. Falling

rate should increase actual unit cost, because fixed capacity costs




are spread over less output. The RW and LC models "miss" this
effect and thus consistently under-estimate unit cost. The
opposite effect occurs when production rate increases, leading to
over-estimates of unit cost.

BIAS for the BE model goes from slightly positive to slightly
negative as Future Production Rate increases, but the effect is
mild and insignificant. This 1is consistent with other
investigations of this model which showed that, although the
magnitude of error may vary across conditions, the BE model is
consistently unbiased (Moses, 1992).

The impact of Future Production Rate on BIAS from the RA and
BA models is more dramatic and significant -- and difficult to
explain. Changing Future Production Rate in either direction, up
or down, causes these models to over-estimate cost (positive BIAS).
Both the RA and BA models "handlé" rate changes in the same way,
using the rate adjustment factor developed by Balut. But why this
factor might lead to consistent over-estimation of cost, regardless

of whether future production rate rises or falls, is not obvious.

Comparjsons of Model Accuracy

Given that the accuracy of the five models depends on the
conditions under which they are used, an inevitable gquestion
arises: Which model appears to perform "best"™ under which
conditions? Table 3 ranks the models by median ERROR, both overall
(full sample) and by subsamples partitioned on values of the seven
condition variables. Several observations seem noteworthy from
these comparisons.
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Table 3
Ranking of Alternative Cost Progress
Models in Terms of Median Error
(Most accurate= 1, least= 5)

e ——— ezt
Conditions:
RW LC RA BE

Overall 1 3 2 4

Burden I
Low 1 4 3 I
Moderate 1 2 l
High 1 3 2

Learning Slope |
Steep 1 4 , 3
Moderate 1 4 3 J
Slight 1 4 3

Cost

Variability
Little 2 4 3 ]
Moderate 1 2 3 l
Great 1 4 2 |

Quantity

Variability
Little 1 3 2 J
Moderate 1 S 2 4 l
Great 1 4 2 I




Table 3 Continued

Quantity
Trend

Little
Growth

Moderate
Growth

High
Growth

Plot Points

Few

More

Magg

Future Prod.
Rate

Down

W

Little ch.

(&)
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First is the consistent domination of the RW model, ranking
most accurate overall and in all but a couple of the subsamples.

Next, is the "second place" showing for the RA model. 1t is
second most accurate overall (and in a majority of the subsamples)
and tends to be the model that outperforms the RW when the RW is
not most accurate. This showing for the RA model is a bit
surprising. The model is an abbreviated (no learning) version of
the Balut (1981) model, and was created for this study simply to
include, and test, a model incorporating rate changes but not
learning. This model easily outperformed the "full" Balut model
(#5) suggesting that Balut’s contribution to modeling, the rate
adjustment factor, may be even more useful when left "unattached"
to the learning curve.

Third is the tendency for the models that required estimation
of a learning rate (the LC, BE and BA models) to perform less well.

Last, there is a general pattern: An inverse relationship
between accuracy and the number of variables in a model: The LC
and RA models incorporate one variable more than the RW model
(either cumulative gquantity or production rate) and accuracy
declines. The BE and BA models incorporate two additional
variables (both cumulative quantity and production rate) and

accuracy declines some more.

CONCLUSIONS AND FINAL COMMENTS

The objective of this paper has been to document the accuracy
of five familiar cost progress models under varying conditions,

using cost data from real world programs. Accuracy was evaluated
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in terms of ability to forecast next-period unit cost. Data
consisted of annual lot costs from 46 military aerospace programs,
arranged so that models were used to forecast 121 next-period
costs. The five cost progress models forecasted future cost using
some combination of variables reflecting (a) past costs, (b)
cumulative quantity, and (c) production rate. Specific findings
and error patterns have been presented; broader conclusions follow:

1. The accuracy of all cost progress models (tested) does
depend on the circumstances or conditions in which they are used.
Those conditions can be identified in advance. Thus a cost
estimator using a particular model may be able to assess the risk
of forecast error depending on the conditions.

2. Which conditions affect accuracy, and by how much, varies
somewhat from model to model. But the results suggest that the
amount of fixed cost burden, the‘degree of apparent learning, the
degree of past variability in period-to-period cost and,
particularly, the nature and degree of change in the future
production rate provide information that can inform a cost
estimator about the risk of forecast error from using a particular
model.

3. It is not obvious that more sophisticated cost progress
models improve forecasting. Quite the contrary for the sample
here; forecast accuracy declined as additional variables were
includead.

4. Attempts by the models in this study to deal with the

effects of changing production rate (of particular interest
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currently, given the changing industrial picture) do not appear to
have been very successful. This conclusion follows from the
relatively poorer accuracy of the BE and BA models and from the
fact that error for all the models increased when future production
rates varied from the past. The model that did the best at
(explicitly) adjusting forecasts for rate changes seems to be the
simpler RA model and further study of the usefulness of this model
seems warranted.

5. Although a relatively large sample of aerospace programs
was included, all of the findings and conclusions should be
tempered by the acknowledgement that they came from tests on one
set of data ~- cost data that was at a high level of aggregation
(annual lot costs) and reasonably lean (the maximum data points for
fitting a model was 13). Results would 1likely be most
generalizable to similar cost fofecasting situations. On the other
hand, many of the error patterns observed in this study have also
been observed in previous studies evaluating models on simulated
data, so it is unlikely that the error patterns observed can be
discounted as simply sample specific. Perhaps some of the findings
may be viewed as tentative -- as hypotheses to be additionally
supported (or contradicted) by future research. Given the findings
of this study, one direction such research might take would be to
start with the following question: Under what circumstances can
more complex cost progress models outperform the simple random walk

model?
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1. Yelle (1979) reviews the literature, with an emphasis on
applications of the learning curve approach. Dutton and Thomas
(1984) provide a more recent review, identifying and categorizing
the factors that cause the learning phenomenon. Teplitz (1991)
provides a comprehensive practical introduction to using learning
curves, including a discussion of modeling problems and curve
forms.

2. One review of the literature pertaining to learning curves
(Cheney, 1977) found that 36% of the articles reviewed attempted to
augment the learning curve model in some manner by the inclusion of
production related variables.

3. Several explanations for these varying, inconclusive empirical
results can be offered: (a) Varying results are to be expected
because rate changes can lead to both economies and diseconomies of
scale. (b) Production rate effects are difficult to isolate
empirically because of colinearity with cumulative quantity
(Gulledge and Womer, 1986). (c) Researchers have usually used
inappropriate measures of production rate leading to misspecified
models (Boger and Liao, 1990). (d) The impact of a production
rate change is dominated by other uncertainties (Large, Hoffmayer,
and Kontrovich, 1974), particularly by cumulative quantity (Asher,
1956). Alchian (1963), for example, was unable to find results for
rate adjustment models that improved on the traditional learning
curve without a rate parameter.

4. Note that this is an incremental unit cost model rather than a
cumulative average cost model. Liao (1988) discusses the
differences between the two approaches and discusses why the
incremental model has become dominant in practice. One reason is
that the cumulative model weights early observations more heavily
and, in effect, "smooths" away period-to-period changes in average
cost.

5. Empirically a value for F of 14.7% was used. This figure comes
from Balut (1981) and is an average derived from aerospace industry
data during the late 1970s.

6. Readers familiar with the Balut modeling approach will recall
that cost estimates were made using a learning curve and then
adjust using the overhead redistribution model. Learning is
ignored here by design. The intent is to present a model which
reflects changes in production rate only (i.e., a model from
category 3 1listed previously). Model 5 will reincorporate
learning.

7. There was no need to estimate parameters for models 1 and 3.
Variables can just be plugged in to create a cost forecast. Models
2 and 4 were estimated using standard linear regression on logged
variables. Estimating model 5 on real data and making a cost
forecast using the model involved several steps: (1) An average
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production rate (R,) for all past lots was calculated as a
reference. (2) Adjustment factors (A,.) for each 1lot were
calculated as a function of differences between lot production rate
(R,) and the average rate (R,). (3) Actual past unit costs were
transformed using the adjustment factors to the unit costs they
"would have been" if the production rate had not differed from the
average. (4) Traditional 1learning curves were fit to these
transformed costs to estimate learning curve parameters. (5) The
learning curve was used to forecast future cost, assuming future
production rate would be average. (6) Future unit cost was
adjusted if the production rate in the future period differed from
the average.

8. Some research (e.g., Moses, 1993) has shown there may be little
association between a cost model’s ability to explain past costs
and its ability to forecast future costs. Higher R? (better
explanation) can always be achieved by adding variables to a model
but high R?* may be a poor indicator of forecast accuracy.
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